资讯与服务

    (周一至周日 9:00-21:00)
    微信:liu87712531
    微信:lin445385978

    邮箱:87712531@qq.com

    咨询电话:15321970583

网站服务

您当前位置:首页 -> 计算机论文 -> 计算机理论->详细(目前国内最大最全原创最多的免费论文中心)

客服QQ咨询:点击这里给我发消息 点击这里给我发消息

无忧论文,为您指导,让您轻松发表,轻松晋级!

字号大小:


智能算法综述(三)

作者:不是人 整理:本网站论文网 录入时间:2011-12-14 00:18:10
神经网络的稳定性,并利用此方法建立求解优化计算问题的系统方程式。基本的Hopfield神经网络是一个由非线性元件构成的全连接型单层反馈系统。

  网络中的每一个神经元都将自己的输出通过连接权传送给所有其它神经元,同时又都接收所有其它神经元传递过来的信息。即:网络中的神经元t时刻的输出状态实际上间接地与自己的t-1时刻的输出状态有关。所以Hopfield神经网络是一个反馈型的网络。其状态变化可以用差分方程来表征。反馈型网络的一个重要特点就是它具有稳定状态。当网络达到稳定状态的时候,也就是它的能量函数达到最小的时候。这里的能量函数不是物理意义上的能量函数,而是在表达形式上与物理意义上的能量概念一致,表征网络状态的变化趋势,并可以依据Hopfield工作运行规则不断进行状态变化,最终能够达到的某个极小值的目标函数。网络收敛就是指能量函数达到极小值。如果把一个最优化问题的目标函数转换成网络的能量函数,把问题的变量对应于网络的状态,那么Hopfield神经网络就能够用于解决优化组合问题。

  对于同样结构的网络,当网络参数(指连接权值和阀值)有所变化时,网络能量函数的极小点(称为网络的稳定平衡点)的个数和极小值的大小也将变化。因此,可以把所需记忆的模式设计成某个确定网络状态的一个稳定平衡点。若网络有M个平衡点,则可以记忆M个记忆模式。

  当网络从与记忆模式较靠近的某个初始状态(相当于发生了某些变形或含有某些噪声的记忆模式,也即:只提供了某个模式的部分信息)出发后,网络按Hopfield工作运行规则进行状态更新,最后网络的状态将稳定在能量函数的极小点。这样就完成了由部分信息的联想过程。

  Hopfield神经网络的能量函数是朝着梯度减小的方向变化,但它仍然存在一个问题,那就是一旦能量函数陷入到局部极小值,它将不能自动跳出局部极小点,到达全局最小点,因而无法求得网络最优解。 转贴于 中国论文下载中心 http://www.studa.net

undefined undefined

  3 遗传算法

  遗传算法(Genetic Algorithms)是基于生物进化理论的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。它是在70年代初期由美国密执根(Michigan)大学的霍兰(Holland)教授发展起来的。1975年霍兰教授发表了第一本比较系统论述遗传算法的专著《自然系统与人工系统中的适应性》(《Adaptation in Natural and Artificial Systems》)。遗传算法最初被研究的出发点不是为专门解决最优化问题而设计的,它与进化策略、进化规划共同构成了进化算法的主要框架,都是为当时人工智能的发展服务的。迄今为止,遗传算法是进化算法中最广为人知的算法。

  近几年来,遗传算法主要在复杂优化问题求解和工业工程领域应用方面,取得了一些令人信服的结果,所以引起了很多人的关注。在发展过程中,进化策略、进化规划和遗传算法之间差异越来越小。遗传算法成功的应用包括:作业调度与排序、可靠性设计、车辆路径选择与调度、成组技术、设备布置与分配、交通问题等等。

  3.1 特点

  遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为: ① 首先组成一组候选解; ② 依据某些适应性条件测算这些候选解的适应度; ③ 根据适应度保留某些候选解,放弃其他候选解; ④ 对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

  遗传算法还具有以

首页 上一页 1 2 3 4 5 6 下一页 尾页 3/6/6

上一篇PC控制系统设计的要点
下一篇数字图书馆的知识产权问题探析